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Abstract

Influenza vaccination is the primary approach to prevent influenza annually. WHO/CDC recommendations prioritize
vaccinations mainly on the basis of age and co-morbidities, but have never considered influenza infection history of
individuals for vaccination targeting. We evaluated such influenza vaccination policies through small-world contact
networks simulations. Further, to verify our findings we analyzed, independently, large-scale empirical data of influenza
diagnosis from the two largest Health Maintenance Organizations in Israel, together covering more than 74% of the Israeli
population. These longitudinal individual-level data include about nine million cases of influenza diagnosed over a decade.
Through contact network epidemiology simulations, we found that individuals previously infected with influenza have a
disproportionate probability of being highly connected within networks and transmitting to others. Therefore, we showed
that prioritizing those previously infected for vaccination would be more effective than a random vaccination policy in
reducing infection. The effectiveness of such a policy is robust over a range of epidemiological assumptions, including cross-
reactivity between influenza strains conferring partial protection as high as 55%. Empirically, our analysis of the medical
records confirms that in every age group, case definition for influenza, clinical diagnosis, and year tested, patients infected
in the year prior had a substantially higher risk of becoming infected in the subsequent year. Accordingly, considering
individual infection history in targeting and promoting influenza vaccination is predicted to be a highly effective
supplement to the current policy. Our approach can also be generalized for other infectious disease, computer viruses, or
ecological networks.
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Introduction

Influenza has a long history of causing substantial morbidity,

mortality and economic losses annually [1–3]. In Israel, influenza

is responsible for about 801,200 reported infections (around 10%

of the population), 4130 hospitalizations, 1140 deaths, and

economic costs of 261 million dollars [3,4], while in the US,

influenza is responsible for 610,600 life years lost and economic

loss of $87.1 billion annually [1]. Influenza vaccination is the

primary approach to reduce the disease burden and is important

not only for those vaccinated, but also to reduce transmission [2].

Recommendations by the World Health Organizations (WHO)

[5], the U.S. Center for Disease Control and Prevention (CDC)

[2], as well as the Israeli Ministry of Health have prioritized

vaccination based on age, profession, and co-morbidities. How-

ever, these recommendations have not considered individual

influenza infection history as an indication of future risk that can

be used to supplement current policies.

An individual’s infection risk is governed by their contacts as

manifested by their social interactions. A contact network model

captures the patterns of interactions that expose individuals to

potential transmission. In the context of contact network

epidemiology, centrals, individuals characterized by higher con-

nectivity than average, are more likely both to become infected

and to transmit infection [6,7]. Thus, prioritizing the vaccination

of centrals could be effective in curtailing influenza transmission by

reducing the network connectivity. However, identifying centrals is

challenging [8], because the contact network is generally

unknown.

One study [6] offered a novel way to reach the centrals in a

network by randomly choosing individuals and asking them to

deliver a vaccination dose to one of their contacts, an approach

known as the ‘acquaintance immunization strategy’, suggests an indirect

way to locate the centrals. Although this approach is an effective

way to curtail transmission in both computer and population

networks, it would be challenging to implement such a policy in

the case of influenza vaccination.

In the current study we offer a practical way to devise a

vaccination policy using the simple logic of targeting previous

influenza patients. We propose that even in the absence of
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information about network structure, centrals are at higher risk of

influenza infection and can thus be identified as being dispropor-

tionately represented in the pool of individuals who were

previously infected. Further, in addition to social interaction, a

variety of factors, such as genetics, co-morbidities, demographics,

and epidemiological characteristics [2], may affect the risk and

severity of infection, and remain relatively invariable over time.

Regardless of whether individuals are predisposed to infection

because of these factors or contact connectedness, they can be

identified through previous infection. This approach is more

straightforward than attempting to target individuals based on all

possible risk factors, particularly as some risk factors may be

unknown, difficult to identify or politically challenging to

implement. Although the effectiveness of a policy that targets

those previously infected initially seems to be counter-intuitive,

since previously infected are likely to have partial protection

against subsequent infection due to cross-reactivate antibodies [9],

we found that previously infected individuals are much more likely

to be infected even when taking into account biologically realistic

rates of cross-reactivity [10].

Our findings are based on contact network epidemiology

simulations and confirmed by empirical clinical data provided by

the two largest Health Maintenance Organizations (HMOs) in

Israel, covering more than 74% of the Israeli population. Our

study is the first to address the interplay among previous infection

history, immunological cross-reactivity, and social behavior as the

basis for an innovative yet feasible supplement to the current

influenza vaccination policies.

Methods

Ethics statement
The surveillance data were analyzed anonymously, and

approved to be used by the Clalit health services sub-Helsinky

institutional review board, signed and approved by Dr. Eitan

Wertheim, protocol number 127/2012.

Contact network simulations
Our simulations were applied to an epidemiological contact

network based on the Portland population [11]. The Portland

contact network derives from detailed microscopic simulation-

based modeling and integration techniques performed by the

Network Dynamic and Simulation Science Laboratory (NDSSL)

at Virginia Tech with the purpose of creating a contact network

reflecting an urban population [11]. The network includes

1,575,861 nodes, each of which represent an individual and

19,681,820 edges, each of which represents a contact between

individuals.

To determine the robustness of our results, we validated our

findings on three alternative small-world [12] scale-free networks:

the Brightkite location-based network, the Gowalla location-based

network, and the Barabási algorithm based network [13–15].

These networks vary in terms of the number of contacts, clustering

coefficients, and the node-to-node distance [12]. The Brightkite

location-based network is based on service providers where users

share their locations by checking-in. The network was generated

by the Stanford Network Analysis Project using their public

Application Programming Interface, which consists of 58,228

nodes and 214,078 edges [16]. The Gowalla location-based

contact network is a website where users share their locations by

checking-in. The network was collected by the Stanford Network

Analysis. It consists of 196,591 nodes and 950,327 edges [13]. We

also created a network with 100,000 nodes and 400,000 edges

according to the Barabási algorithm [14].

To evaluate centrality for each node in the networks, we

calculated two common measures: number of contacts and K-shell

decomposition values (K-shell) (Figure S1). Compared with the

straightforward number of contacts measure, K-shell also take into

account the global connectivity of the nodes to which a node is

connected [17,18].

We used the Susceptible-Infectious-Recovered (SIR) compart-

mental model [19] to evaluate disease spread within the networks.

According to each network configuration, an individual may infect

only susceptible neighbors (i.e., nodes with whom they have edges).

Given that not all individuals will be susceptible in the beginning

of each season [10,20,21], we parameterized transmissibility using

the effective reproductive number, Re [21–23], defined as the

average number of secondary infections resulting from each

infective person [19] (Table 1). Protection following infection may

last longer than a year [10] due to cross-reactivity between years.

We considered the entire possible range of cross-reactivity from 0

to 100%, where 0% corresponds to no immunological protection

and 100% corresponds to full protection acquired from influenza

infection in the prior year. Depending on vaccine efficacy

(Table 1), we assume that a proportion of individuals who are

vaccinated are protected for one season [24].

We ran over one million simulations drawing parameter values

from distributions that span a biologically realistic range (Table 1),

as well as different vaccination rates and efficacies (Text S1). To

determine whether previously infected individuals are more likely

to be centrals, we evaluated the decile of the centrality score for

each node in the network (based on the two measurements of

centrality) and the risk ratio of becoming infected for a range of

reproductive ratios and for different levels of cross-reactivity

compared with the risk of a random individual. In each iteration of

the simulation, we ran two successive influenza seasons. In the first

season, we randomly vaccinated 0–40% of the population. In the

second season of each simulation, we considered three policies: a

Author Summary

WHO/CDC recommendations prioritize influenza vaccina-
tions primarily on the basis of age co-morbidities, but have
never considered targeting vaccination for individuals
previously infected with influenza. An individual’s infection
risk is governed by his or her contacts as manifested by his
or her social interactions. Thus, through contact network
simulations that capture contact patterns, we show here
that individuals previously infected with influenza have a
disproportionate probability of being highly connected
within networks and thus serve as the super-spreaders.
Accordingly, targeting them is effective in curtailing
transmission. In addition to social interaction, a variety of
factors, including genetics, co-morbidities, demographics,
and epidemiological characteristics, may affect the risk and
severity of influenza infection. Regardless of whether
individuals are predisposed to infection because of these
factors, or social interactions, we show that they can be
identified through previous infection. Empirically, our
analysis of medical records of influenza diagnosed in both
hospitals and clinics confirms that in every age group, case
definition for influenza, clinical diagnosis, and year tested,
patients infected in the year prior had a substantially
higher risk of becoming infected in the subsequent year.
Thus, considering individual infection history in targeting
and promoting influenza vaccination is predicted to be a
highly effective supplement to the current prioritizations
as it focuses on people with greater risk to become
infected and transmit.

Last Season’s Patients for Influenza Vaccination
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Random Vaccination Policy (RVP), an acquaintance immuniza-

tion policy (AIP), which targets the acquaintances of a random

node [6], and a vaccination policy prioritizing those who were

infected in the previous season, Previously Infected Policy (PIP).

For the PIP strategy, we assumed previously infected individuals

are vaccinated first. If any vaccine doses remain after those

prioritized have been vaccinated, the remaining doses are

randomly distributed to the rest of the population.

Empirical demonstration
Our primary data were provided by Clalit Health Services and

Maccabi Health Services and included demographic, socio-

economic, and ethnic data [25]. Clalit is the largest HMO in

Israel, with membership varying between 3.47–3.72 million, and

constituting about 53% of the Israeli population during the 2003–

2012 the study period.

The Clalit dataset includes codes of the diagnosis recorded by

the physicians in clinics according to the ICD9 protocol (codes 487

for ‘influenza’ and 465 for ‘acute upper respiratory infections of

multiple or unspecified sites’) as well as hospitalizations due to

influenza or pneumonia (ICD9, 486 ‘pneumonia organism

unspecified’ as well as codes 487, 465). Maccabi is the second

largest HMO in Israel with 1.4–1.8 million members, constituting

about 23% of the Israeli population, during the study period.

Their records include full datasets of 12 years from September

1998 to April 2010 with 380,000 records. The data included

influenza cases diagnosed in clinics according to the ICD10

protocol (code J11). Our case definition for influenza-like-illness

(ILI) in both of the health maintenance organizations is detailed in

Text S2.

As influenza infection rates depend on age, we stratified our

data analysis by: 0–5, 6–15, 16–25, 26–35, 36–49, 50+. This

division also facilitates evaluating the age-specific prioritization of

the recommendations of the U.S. CDC as well as the Israeli

Health Ministry which currently focus on ages 0–5 and individuals

above age 50. In addition, we considered the relative risk of age

group 25–35 which, along with children, are disproportionately

responsible for transmission [26].

Rather than a case of influenza, an ILI infection might indicate

elevated risk for influenza, because transmission routes of many

upper respiratory diseases are similar. Thus, an ILI might serve as

a predictor of elevated risk for both ILI and actual influenza. For

each age group, in both HMOs, we calculated the relative risk of

infection for those previously diagnosed with ILI compared with

others in the same age group that had not been diagnosed in prior

season.

In the Clalit dataset we stratified our ten seasons of data into

eleven pairs of two consecutive seasons and calculated the risk of

outpatient influenza in season i for influenza outpatient patients

diagnosed in season i21, the risk of outpatient influenza in season i

for patients hospitalized in season i21, the risk of becoming

hospitalized with influenza in season i for outpatient patients

diagnosed in season i21, and the risk of becoming hospitalized

with influenza in season i for patients hospitalized in season i21.

In the Maccabi dataset, we stratified our twelve seasons of data

into eleven pairs of two consecutive seasons and calculated the risk

of outpatient influenza in season i for influenza outpatient patients

diagnosed in season i21 (Text S2).

Not all influenza patients seek medical treatment [1,27], and

some people might have higher tendency to seek medical

treatment when infected with influenza than others, potentially

leading to an overestimation relative risks. In addition, individuals

are likely to visit the same physician when infected with influenza,

and the latter might not diagnosis the infection as ILI. Thus, we

compared evaluations of the policies under the conservative

assumption that individuals can be divided into those that either

seek medical treatment when infected, or not seek medical

treatment. Under this conservative assumption, we calculated an

adjusted relative risk of outpatient infection by removing in each

age group members who were never an outpatient along the entire

period tested.

Results

The risk of future influenza infections for individuals is

determined by the interplay between two countering factors:

social interaction, which governs exposure probability, and cross-

reactivity protection acquired from previous infection. We found

that these factors will affect: 1) the conditions under which central

individuals have a higher risk of infection than non-centrals, 2) the

conditions under which individuals infected in the prior season

have a higher risk to become infected in a succeeding season, and,

consequently, 3) the conditions in which the targeting of last

season’s patients for influenza vaccination will serve as an effective

policy to decrease morbidity. Overall, our analysis demonstrates

that social interaction dominated in determining the overall

effectiveness of targeting influenza vaccination to previously

infected individuals in vast ranges of realistic conditions, as

elaborated below.

Our contact network simulations reveal that individuals infected

with influenza in the prior year have a greater probability of being

more central than others. This finding is robust to the two different

measurements of centrality considered (Figures 1 and S2), and

over the range of biologically realistic epidemiological parameters

for influenza (Table 1). The results were more sensitive to the

initial proportion of susceptibles. Specifically, the greater the cross-

reactivity and attack rate are in the previous season, the lower is

Table 1. Parameter ranges and values for numerical simulations.

Symbol Definition Distribution/range checked References

i0 Initial infection fraction Uniform(0.0001,0.001) [23]

Re Effective reproductive ratio 1.2–1.6 [23,26,31]

V Vaccination rate 0–0.4 [35]

R Vaccination efficacy 0.5–0.8 [2]

D Infection duration (in days) Normal(3.8, 2) [22,36]

h Cross-reactivity rate 0–1

T Daily susceptibility rate between two neighbors Uniform (0.012,0.087) Supplements

doi:10.1371/journal.pcbi.1003643.t001

Last Season’s Patients for Influenza Vaccination
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the risk of infection for the central individuals relative to the rest of

the network. For example, in the Portland network, we found that

individuals with higher K-shell values or higher number of contacts

than others have a higher risk of infection when cross-reactivity

ranges between 0–60%. For cross-reactivity higher than 60%, and

particularly for the upper estimates of influenza transmissibility (i.e.,

Re$1.4), individuals in the ninth or tenth decile with the highest K-

shell value or number of contacts are less likely to get infected

relative to individuals in the fifth decile, because the former were

more likely to have cross-protection from previous exposure.

Nevertheless, even in this case, individuals who have a centrality

score above the median have a higher risk for re-infection than

individuals below the median (Figures 1 and 2). Collectively,

centrals are disproportionately represented in those who were

previously infected even when cross-reactivity reached 80%.

For seasons between which there is no cross-reactivity, we

showed analytically that prior influenza patients have a higher risk

of infection in the succeeding season (text S1). Consistent with this

analytical finding, our simulations on the Portland network also

demonstrate that when there is no cross-reactivity, the relative risk

of previous patients ranges from 2.3–3.1 compared to individuals

not infected in the prior season. However, this risk can also fall

below one in cross-reactivity rates above 60% (Figure S3).

We compared three policies: a Random Vaccination Policy

(RVP), the acquaintance immunization policy (AIP), and a

vaccination policy prioritizing those who were infected in the

previous season, Previously Infected Policy (PIP) (see methods).

Overall, in the Portland network, results demonstrate that PIP is

more effective than AIP in reducing morbidity rates even in cases

where cross-reactivity is as high as 36–72%. PIP is also more

preferable than RVP even in cases where cross-reactivity is as high

as 57–78% (Figures 3, Figure S4 and Figure S5). For example,

when cross-reactivity of 40% has been observed and 15% are

vaccinated the mean risk of infection would be 14%, 11.5% and

5.6% for RVP, AIP and PIP, respectively; whereas when 30% are

vaccinated the mean risk would be 8.6%, 4.6%, and 3.6% for

RVP, AIP and PIP, respectively.

The variability observed in our simulations (Figure 3, Figure S4

and Figure S5) arises from the sensitivity of PIP to two drivers. The

first driver is the vaccination coverage in the previous season or

infected in the previous season and who remained protected due to

cross-reactivity as those individuals cannot be detected by our

policy. The second driver is the incidence in the previous season. If

the prior incidence is relatively low, all of those who had been

infected in the prior year would be vaccinated in the subsequent

year, but the remaining doses will be randomly distributed to the

Figure 1. The relative risk of infection given parameters of centrality. The mean and 95% confidence interval of relative risk of infection for
an individual compared to the rest of the population, given his/her K-shell (panels A and B), and number of contacts (panels C and D) for cross-
reactivity levels of 0% (panels A and C) and 80% (panels B and D) for effective reproductive number, Re = 1.2 (dotted red), 1.4 (dashed blue) and 1.6
(dot-dashed green). A relative risk above one represents higher risk of infection, compared with the rest of the population.
doi:10.1371/journal.pcbi.1003643.g001

Last Season’s Patients for Influenza Vaccination
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rest of the population, thereby making our policy more similar to

RVP.

To verify the robustness of our results, we determined the

effectiveness of PIP for four networks across a range of biologically

realistic epidemiological parameters for influenza (Table 1). PIP

was found to be more effective than RVP when cross-reactivity was

as high as 57–75% in the Portland Network, 55–80% in the

Barabási algorithm-based network, 80–95% in the Brightkite

Network, and 75–90% in the Gowalla Network. In comparison

with AIP, PIP was effective in lower values of cross-reactivity levels,

ranged from 35–72.5% in Portland Network, 0–40% Brightkite

Network, and 0–40% in the Gowalla Network (Figure 3). PIP was

less effective than AIP in the Barabási algorithm based network,

possibly as a result of the homogeneity of K-shell values among

nodes in this network (Figures S1).

Empirical demonstration
Given that influenza attack rate ranges epidemiologically

between 5–15% [2], our case definition for influenza may be

under-reported in the Maccabi dataset and over-reported in the

Figure 2. Mean risk of infection following vaccination. The mean risk of infection evaluated over the parameters ranges in Table 1 for RVP
(dashed blue), AIP (dashed-doted red), PIP (dashed green), as well as no vaccination (solid black), for cross-reactivity levels of A and B) 0%, C and D)
40%, E and F) 60% G and H) 80%. In the second season, for RVP, AIP and PIP strategies, vaccination coverage for A, C, E and G) 15% and for B, D, F and
H) 30%, and vaccine efficacy of 75%. PIP is preferable than RVP in reducing morbidity for panels A–F, and more preferable than AIP for panels A–D. As
explained in the main text, the risk of infection decreases as the cross-reactivity increases.
doi:10.1371/journal.pcbi.1003643.g002

Last Season’s Patients for Influenza Vaccination
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Clalit dataset. Nevertheless, our analysis of over nine million

medical records showed that patients diagnosed with ILI in the

previous season have a substantially higher risk to be diagnosed

with ILI in the succeeding year (Table 2). Excepting children

below five who had a lower risk of being hospitalized, diagnosed

with outpatient influenza in the season prior, our results were

robust for both HMOs, for each age group and for almost every

year tested. For example, in the Maccabi dataset within the age

group of 35–49, only 1.45% of the population was outpatient ILI.

However, for individuals within this age group who were

diagnosed in the previous year, the risk of becoming infected in

the subsequent year was 11.35%. In the Clalit dataset, within the

age group 35–49, 9.36% were outpatient ILI. The risk was about

four times higher in patients who were outpatient ILI, and two fold

in patients previously hospitalized compared with patients who did

not seek medical treatment of ILI in the year prior (Table 2).

Even when we calculated an adjusted relative risk of outpatient

influenza by considering only members who were diagnosed with

outpatient influenza at least once in the study period (i.e. 2003–

2012 in Clalit dataset and 1998–2010 in Maccabi dataset),

the relative risk for individuals previously outpatient was still

higher than one in each age group (Table 2). This finding

demonstrates that, in addition to age, an individual’s infection

history plays an important role in determining their subsequent

risk of infection.

Discussion

Our work shows that considering individual infection history in

targeting and promoting influenza vaccination would be an

effective supplement to the current policy which prioritizes

individuals on the basis of age and co-morbidities. Our findings

highlight the fundamental role that an individual’s social behavior

plays in disease transmission [28], and reveals that in the interplay

between cross-reactivity and individual risk factors the latter

dominates in determining the overall effectiveness of targeting

influenza vaccination to individuals infected in the prior season.

Our simulations demonstrate that targeting individuals previ-

ously diagnosed with influenza can be effective even if cross-

reactivity is as high as 55–80%. Empirical studies suggest that

cross-reactivity for a specific type of influenza is typically below or

within this range [10]. Additionally, there can be two or three

sub-types of influenza circulating within a single season [29] with

dominance shifting among sub-types between successive years.

Surveillance systems monitor reporting rates rather than actual

prevalence, and thus also include misdiagnoses. Nonetheless, ILI

diagnoses, even if from a different etiology, might indicate elevated

risk of future infection with influenza, because transmission routes

and associated risk factors of many upper respiratory diseases are

similar. Given that respiratory infections other than influenza will

not elicit cross-reactive antibodies, these misdiagnosed individuals

may be at even higher risk for future influenza infection than those

who were previously infected with influenza. To evaluate the

increased risk of those who were previously infected with influenza

versus other respiratory infections, future research should stratify

between clinical diagnosis and laboratory confirmation.

While social interactions modeled in our contact network

simulations are fundamental to influenza transmission, other

factors including genetics, co-morbidities, and demography,

contribute to determine risk for an individual. Similar to social

tendencies, these other factors will also remain relatively invariable

for an individual from year to year. Consequently, previous,

current, and future infection risk can be even more effectively

predicted by prior infection than what we conservatively estimated

from social interaction alone.

If PIP is implemented every influenza season, individuals with

high connectivity might be targeted in the first year, and therefore

will reduce their risk of infection in the subsequent year. However,

Figure 3. Mean indifference curves for PIP vs. RVP and PIP vs. AIP. The curves are shown as a function of the effective reproductive number
and cross-reactivity for A) the Portland Network B) Barabási algorithm-based network C) Brightkite Network D) Gowalla Network. Above each curve,
RVP/AIP is the recommended policy, whereas below the curve, PIP is recommended.
doi:10.1371/journal.pcbi.1003643.g003
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as a result of this reduced risk, in the third year from initiating the

PIP policy, they will be less likely to be infected and subsequently

targeted. Thus, future studies could evaluate the marginal benefit

of considering infection and vaccination history of individuals over

several seasons relative to the prior season alone in determining

vaccine targets.

Targeting previously infected individuals is a relatively straight-

forward approach to implement in an HMO system with

electronic medical records. For instances, individuals previously

infected could be flagged within the electronic records for

vaccination targeting by mailing pamphlets, telephone reminders

or physician recommendations, practices shown to be effective in

promoting influenza vaccination [2]. The suggested policy could

reach several sub-populations, such as those based on socio-

economic status and ethnicity, that correlated with vaccine uptake

and infection rates [30], but which have not been prioritized in the

past due to ethical or political reasons. Furthermore, a high level of

public adherence to this targeted strategy is likely to be achievable,

given that individuals who were recently ill with influenza will

probably be responsive to strategies that reduce their personal risk,

as has been shown to be a primary motivator in vaccination

decisions [23,31,32].

We demonstrated the potential benefit of targeting last

season’s patients for influenza, but such policy may also be

applicable to other diseases including respiratory syncytial virus,

pneumococcal infections and malaria, for which re-infection is

common. Our approach may be generalized to networks outside

the public health field, such as ecology and computer science.

For example, our approach may determine which computers

should be prioritized for antivirus software installations. In fact,

a previous study on computer networks showed that computers

that were attacked in one simulation run are most prone to

attack in other simulation runs [33]. The authors even suggested

little variation in the number of reinfections experienced by the

same computer in different simulation studies, making our

approach likely to be highly effective. In another example, our

approach may also be helpful in ecological networks to identify

and invest efforts to protect species with most essential to

community stability [34].

In summary, we modeled the interplay among previous

infection history, immunological cross-reactivity, and social

behavior as the basis to generate an innovative influenza

vaccination policy. Through contact network simulations we

showed that individuals infected in the year prior have higher

connectivity in the network, and subsequently increased risk of

infection and transmission. Empirically, our analysis of the

medical records confirms that in every age group, case

definition for influenza, clinical diagnosis and year tested,

patients infected in the year prior had a substantially higher

risk of becoming infected in the subsequent year. Accordingly,

the targeting of individuals infected in the prior year is

predicted to be a highly effective supplement to the current

policy.

Supporting Information

Figure S1 Distribution of measurements of centrality.
The distribution of 1) Number of contacts, and 2) K-shell is shown

for A) the Portland Network, B) Brightkite Network, C) Gowalla

Network, D) Barabási Algorithm-Based Network.

(TIF)

Figure S2 Relative risk of infection given parameters of
centrality. The mean and 95% confidence interval of the relative

risk of infection for an individual compared to the rest of the

population, given his/her K-shell (panels A and B), and number of

contacts (panels C and D) for cross-reactivity levels of A) 20% B)

40% C) 60% for effective reproductive number, Re = 1.2 (dotted

red), 1.4 (dashed blue) and 1.6 (dot-dashed green). A relative risk

above one represents higher risk of infection, compared with the

rest of the population. The figure complements Figure 1.

(TIF)

Figure S3 Effects of previous illness on future infection
proportion. The mean and 95% confidence interval of the

relative risk of infection in individuals previously infected versus

individuals not previously infected depending on Re and cross-

reactivity. The black line represents relative risk equal to one.

(TIF)

Figure S4 Boxplot risk of infection following vaccina-
tion. Box-and-Whisker plots of the difference between the risk of

infections for RVP and PIP, and AIP and PIP, over the parameters

ranges in Table 1, for cross-reactivity of A) 0%, B) 40%, C) 60%,

and D) 80%, assuming vaccination coverage of 15% and vaccine

efficacy of 75%. This figure corresponds to Figure 2 panels A, C,

E, and F.

(TIF)

Figure S5 Boxplot risk of infection following vaccina-
tion. Box-and-Whisker plots of the difference between the risk of

infections for RVP and PIP, and AIP and PIP, over the parameters

ranges in Table 1, for cross-reactivity of A) 0%, B) 40%, C) 60%,

and D) 80%, assuming vaccination coverage of 30% and vaccine

efficacy of 75%. This figure corresponds to Figure 2 panels B, D,

F, and G.

(TIF)

Figure S6 Frequency of ILI diagnosis. The right axis refers

to influenza and pneumonia diagnosed in hospitals. The left axis

refers to influenza diagnosis.

(TIF)

Text S1 Supporting information for contact network
analysis.
(DOCX)

Text S2 Supporting information for data analysis.
(DOCX)
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